Implementing resource efficient energy management systems in facilities and buildings becomes increasingly important in the transformation to a sustainable society. However, selecting a suitable configuration based on multiple, typically conflicting objectives, such as cost, robustness with respect to uncertainty of grid operation, or renewable energy utilization, is a difficult multi-criteria decision making problem. The recently developed concept identification technique can facilitate a decision maker by sorting configuration options into semantically meaningful groups (concepts).In this process, the partitioning of the objectives and design parameters into different sets (called description spaces) is a very important step. In this study we focus on utilizing the concept identification technique for finding relevant and viable energy management configurations from a very large data set of Pareto-optimal solutions. The data set consists of 20,000 realistic Pareto-optimal building energy management configurations generated by a many-objective evolutionary optimization of a high quality Digital Twin energy management simulator. We analyze how the choice of description spaces, i.e., the partitioning of the objectives and parameters, impacts the type of information that can be extracted. We show that the decision maker can introduce constraints and biases into that process to meet expectations and preferences. The iterative approach presented in this work allows for the generation of valuable insights into trade-offs between specific objectives, and constitutes a powerful and flexible tool to support the decision making process when designing large and complex energy management systems.
Read full abstract