Abnormal repetitive stereotypic behaviours (SBs) (e.g. pacing, body-rocking) are common in animals with poor welfare (e.g. socially isolated/in barren housing). But how (or even whether) poor housing alters animals’ brains to induce SBs remains uncertain. To date, there is little evidence for environmental effects on the brain that also correlate with individual SB performance. Using female mice from two strains (SB-prone DBA/2s; SB-resistant C57/BL/6s), displaying two forms of SB (route-tracing; bar-mouthing), we investigated how housing (conventional laboratory conditions vs. well-resourced ‘enriched’ cages) affects long-term neuronal activity as assessed via cytochrome oxidase histochemistry in 13 regions of interest (across cortex, striatum, basal ganglia and thalamus). Conventional housing reduced activity in the cortex and striatum. However, DBA mice had no cortical or striatal differences from C57 mice (just greater basal ganglia output activity, independent of housing). Neural correlates for individual levels of bar-mouthing (positive correlations in the substantia nigra and thalamus) were also independent of housing; while route-tracing levels had no clear neural correlates at all. Thus conventional laboratory housing can suppress cortico-striatal activity, but such changes are unrelated to SB (since not mirrored by congruent individual and strain differences). Furthermore, the neural correlates of SB at individual and strain levels seem to reflect underlying predispositions, not housing-mediated changes. To aid further work, hypothesis-generating model fit analyses highlighted this unexplained housing effect, and also suggested several regions of interest across cortex, striatum, thalamus and substantia nigra for future investigation (ideally with improved power to reduce risks of Type II error).
Read full abstract