The study examines the effectiveness of various design strategies in alleviating the impacts of heatwaves in the Mediterranean region, focusing on a densely populated post-refugee urban area in Greece. By analyzing five different design scenarios, the study aims to identify the most efficient approach to mitigate thermal stress outdoors. The five design scenarios include changes in albedo values and coatings and alterations in the number and type of trees. The methodology includes a literature review, field work and microclimate simulations with the use of ENVI-met 5.6.1. The study evaluates ENVI-met data through potential air temperature, PET and UTCI analysis. The experimental results indicate that the most effective strategy is associated with urban greening. In particular, increasing tree cover considerably reduces air temperature, PET and UTCI values by 4 to 10 degrees Celsius. This finding highlights the potential of urban greening to enhance thermal comfort and combat heatwave effects. The research findings may be useful to landscape architects and urban designers, in light of a more climate-responsive urban design in the Mediterranean region. Future research may also assess the combined impact of multiple mitigation strategies on a larger scale, informing evidence-based policies for heatwave resilience.