This article considers the issue of H∞ adaptive event-triggered feedback control for degenerate jump systems under actuator faults and impulsive deception attacks. Based on periodic sampling strategy, a mode-dependent adaptive event-triggered scheme is developed, which can save communication resources, avoid the Zeno phenomenon and take full advantage of Markovian mode information. By constructing the neoteric Lyapunov-Krasovskii (L-K) functional containing piecewise linear impulsive auxiliary functions and applying singular value decomposition (SVD) technique, the fresh stochastic admissibility conditions for degenerate Markovian jump systems under actuator faults and impulsive deception attacks are obtained under the framework of linear matrix inequalities (LMIs), and then the adaptive event-triggered scheme with weighted matrices and feedback controller are designed simultaneously. By applying freedom weight matrix method and the property that the network-induced delay derivative is one, the non-strict LMI conditions are transformed into strict ones, such that the stochastic admissibility of the degenerate jump systems and state feedback controller gains are realized adequately. Finally, a direct current motor-controlled inverted pendulum (DCMIP) device is used to confirm the feasibility of the presented approach.