Functional near-infrared spectroscopy (fNIRS) has been established as an informative modality for understanding the hemodynamic-metabolic correlates of cortical auditory processing. To date, such knowledge has shown broad clinical applications in the diagnosis, treatment, and intervention procedures in disorders affecting auditory processing; however, exploration of the hemodynamic response to auditory tasks is yet incomplete. This holds particularly true in the context of auditory event-related fNIRS experiments, where preliminary work has shown the presence of valid responses while leaving the need for more comprehensive explorations of the hemodynamic correlates of event-related auditory processing. In this study, we apply an individual-specific approach to characterize fNIRS-based hemodynamic changes during an auditory task in healthy adults. Oxygenated hemoglobin (HbO2) concentration change time courses were acquired from eight participants. Independent component analysis (ICA) was then applied to isolate individual-specific class discriminative spatial filters, which were then applied to HbO2 time courses to extract auditory-related hemodynamic features. While six of eight participants produced significant class discriminative features before ICA-based spatial filtering, the proposed method identified significant auditory hemodynamic features in all participants. Furthermore, ICA-based filtering improved correlation between trial labels and extracted features in every participant. For the first time, this study demonstrates hemodynamic features important in experiments exploring auditory processing as well as the utility of individual-specific ICA-based spatial filtering in fNIRS-based feature extraction techniques in auditory experiments. These outcomes provide insights for future studies exploring auditory hemodynamic characteristics and may eventually provide a baseline framework for better understanding auditory response dysfunctions in clinical populations.