We construct hypergraphs to analyze functional brain connectivity, leveraging event-related coherence in magnetoencephalography (MEG) data during the visual perception of a flickering image. Principal network characteristics are computed for the delta, theta, alpha, beta, and gamma frequency ranges. Employing a coherence measure, a statistical estimate of correlation between signal pairs across frequencies, we generate an edge time series, depicting how an edge evolves over time. This forms the basis for constructing an edge-to-edge functional connectivity network. We emphasize hyperedges as connected components in an absolute-valued functional connectivity network. Our coherence-based hypergraph construction specifically addresses functional connectivity among four brain lobes in both hemispheres: frontal, parietal, temporal, and occipital. This approach enables a nuanced exploration of individual differences within diverse frequency bands, providing insights into the dynamic nature of brain connectivity during visual perception tasks. The results furnish compelling evidence supporting the hypothesis of cortico–cortical interactions occurring across varying scales. The derived hypergraph illustrates robust activation patterns in specific brain regions, indicative of their engagement across diverse cognitive contexts and different frequency bands. Our findings suggest potential integration or multifunctionality within the examined lobes, contributing valuable perspectives to our understanding of brain dynamics during visual perception.
Read full abstract