Organic Rankine cycle (ORC) is considered to be a good solution to the high-efficient recovery of low-grade heat for saving energy and reducing carbon emissions. As the core component, the heat exchanger plays a significant role in the thermo-economic performance evaluation of an ORC plant and its heat transfer correlations greatly influence the cycle performance. In this paper, 8 two-phase heat transfer correlations (4 flow boiling ones and 4 flow condensation ones) are utilized to design the plate-type heat exchangers, and a comparative study among different correlations is carried out. The result shows the designed evaporators are finitely affected by heat transfer correlations whereas the situation with the designed condensers is the opposite. The net output power is slightly influenced with a relative difference within 1.1% but the system's economic performance is significantly affected with the maximum relative difference of electricity production cost up to 11.2%. The environmental performance is hardly affected by correlations with the maximum relative difference of total greenhouse gas emission within 0.96%. This paper analyzed the performance variation of the ORC under different correlations and provided a guideline for designing heat exchangers and evaluating the off-design performance of ORC systems.
Read full abstract