Piper is one of two large genera in the Piperaceae, and with ca. 2600 species, is one of the largest plant genera in the world. Species delimitation and evaluation of genetic diversity among populations are important requisites for conservation and adequate exploitation of economically important species. DNA barcoding has been used as a powerful tool and a practical method for species characterization and delimitation. The present work aims to evaluate molecular markers for barcoding three Piper species native to Brazil: P. gaudichaudianum (“jaborandi” or “pariparoba”), P. malacophyllum (“pariparoba-murta”) and P. regnellii (“caapeba” or “pariparoba”). A reference DNA barcode library was developed using sequences of three candidate regions: ITS2, trnH-psbA and rbcL. Transferability of the microsatellite (SSR) primers Psol 3, Psol 6 and Psol 10, designed originally for Piper solmsianum, to the three Piper species was also evaluated. The discriminatory power of the markers was based on the determination of inter- and intraspecific distances, phylogenetic reconstruction, and clustering analysis, as well as BLASTn comparison. Sequences of ITS2 enabled efficient species identification by means of the BLASTn procedure. Based on these sequences, intraspecific divergence was lower than interspecific variation. Maximum Parsimony analyses based on ITS2 sequences provided three resolved clades, each corresponding to one of the three analysed species. Sequences of trnH-psbA and rbcL had lower discriminatory value. Analyses combining sequences of these regions were less effective toward the attainment of resolved and strongly supported clades of all species. In summary, robustly supported clades of P. regnellii were obtained in most of the analyses, based either on isolated or combined sequences. The SSRs primers Psol 3, Psol 6 and Psol 10 were shown to be transferable to P. gaudichaudianum and P. regnellii, but not to P. malacophyllum. Preliminary cluster analyses based on the polymorphism of the amplified products suggested that Psol 3 has lower potential than Psol 6 and Psol 10 for discrimination of Piper species.
Read full abstract