PurposePerformance optimization algorithms based on node attributes are of great importance for sharding blockchain systems. Currently, existing studies on blockchain sharding algorithms consider only random selection sharding strategies. However, the random selection strategy does not perfectly utilize the performance of a node to break the bottleneck of blockchain performance.Design/methodology/approachThis paper proposes a blockchain sharding algorithm called TOPSIS Optimization Sharding System (TOSS), which is based on entropy weight method, relative Euclidean distance and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). It defines a multi-attribute matrix to assess node performance and applies TOPSIS for scoring nodes. Then, an algorithm based on the TOPSIS method is proposed to calculate the performance score of each data node. In addition, an entropy weighting method is introduced to obtain the weights of each attribute to balance the impact of dimensional differences of attributes on the attribute weights. Nodes are ranked by composite scores to guide partitioning.FindingsThe effectiveness of the proposed algorithm in this paper is verified by comparing it with various comparative algorithms. The experimental results show that the TOSS algorithm outperforms the comparison algorithms in terms of performance improvement for the blockchain system, and the throughput metrics are improved by about 20% in comparison.Originality/valueThis study introduces a novel approach to blockchain sharding by incorporating the entropy weight method and relative Euclidean distance TOPSIS into the sharding process. This approach allows for a more effective utilization of node performance attributes, leading to significant improvements in system throughput and overall performance, addressing the limitations of the random selection strategy commonly used in existing algorithms.
Read full abstract