Human ribosomal protein S13 is a structural element of the small subunit of ribosome. It is a homologue of eubacterial ribosomal protein S15, and, besides, it possesses an extended N-terminal region, characteristic of the S15p family in eukaryotes and archaea. In the present study, we investigated binding of recombinant ribosomal protein S13 and its mutants containing deletions or substitutions of amino acid residues in different regions with an RNA transcript corresponding to a fragment of the central domain of 18S rRNA. We found that replacement of ultra-conservative residues H101 and D108 as well as deletions of either 29 C-terminal or 27 N-terminal residues substantially reduced affinity of the protein to the RNA transcript. Deletion of 54 C-terminal or 80 N-terminal residues completely deprived the protein of binding capacity. Using a footprinting assay, we identified sites in the RNA transcript changing their accessibilities to action of hydroxyl radicals under binding of either full-length protein S13 or its mutant lacking 27 N-terminal residues. It is shown that these sites are located mainly in helix H22 of the 18S rRNA and in the region of its junction with helix H20 and are consistent predominantly with contacts of the rRNA with the conserved part of the protein. We concluded that binding of ribosomal protein S13 to 18S rRNA is provided mainly by conserved motifs of the protein corresponding to those motifs in its eubacterial homologue that are involved in the interaction with 16S rRNA in the 30S subunit. Role of the N-terminal region of the protein in its binding to the central domain of 18S rRNA is discussed.