The burning of Ethylene-Propylene-Diene Monomer (EPDM) rubber generates substantial smoke, posing a severe threat to the environment and personal safety. Considering the growing emphasis on safety and environmental protection, conventional non-smoke-suppressing flame retardants no longer satisfy the present application requirements. Consequently, there is an urgent need to develop a novel flame retardant capable of suppressing smoke formation while providing flame retardancy. Sepiolite (SEP), a porous silicate clay mineral abundant in silica and magnesium, exhibits notable advantages in the realm of flame retardancy and smoke suppression. This research focuses on the synthesis of two highly efficient flame-retardant smoke suppression systems, namely AEGS and PEGS, using Enteromorpha (EN), graphene (GE), sepiolite (SEP), ammonium polyphosphate (APP), and/or piperazine pyrophosphate (PPAP). The studied flame-retardant systems were then applied to EPDM rubber and the flame-retardant and smoke suppression abilities of EPDM/AEGS and EPDM/PEGS composites were compared. The findings indicate that the porous structure of sepiolite plays a significant role in reducing smoke emissions for EPDM composites during combustion.