The location of aluminum within the framework or extra-framework of zeolites is a critical factor in determining its catalytic performance. Despite extensive research on the identification and formation mechanism of extra-framework aluminum (EFAl), its impact on catalytic performance requires further investigation. Herein, mordenite (MOR) zeolites with comparable acid density within the 8MR and 12MR channels but different EFAl contents were prepared, and their catalytic roles were examined in syngas conversion. Intelligent gravimetric analysis, model experiment of ethylene conversion and thermogravimetric analysis demonstrate that the existence of EFAl species can inhibit the secondary conversion of ethylene to long chain hydrocarbons (i.e., C5+) as well as the over-accumulation of carbonaceous species. However, excessive EFAl species lead to rapid deactivation due to restricted space and thus severe diffusion limitation. MOR zeolite with a moderate amount of EFAl species achieves a superior ethylene selectivity and exhibits an enhanced stability in syngas conversion when combined with ZnAlOx oxide. The insights gained in this work provide important guidance for the design of more efficient zeolite-based catalysts.
Read full abstract