The goals of this study were to predict the genes associated with the biodegradation of organic contaminants and to examine microbial community structure in samples from two contaminated sites. The approach involved a predictive bioinformatics tool (PICRUSt2) targeting genes from twelve KEGG xenobiotic biodegradation pathways (benzoate, chloroalkane and chloroalkene, chlorocyclohexane and chlorobenzene, toluene, xylene, nitrotoluene, ethylbenzene, styrene, dioxin, naphthalene, polycyclic aromatic hydrocarbons, and metabolism of xenobiotics by cytochrome P450). Further, the predicted phylotypes associated with functional genes early in each pathway were determined. Phylogenetic analysis indicated a greater diversity in the sediment compared to the groundwater samples. The most abundant genera for sediments/microcosms included Pseudomonas, Methylotenera, Rhodococcus, Stenotrophomonas, and Brevundimonas, and the most abundant for the groundwater/microcosms included Pseudomonas, Cupriavidus, Azospira, Rhodococcus, and unclassified Burkholderiaceae. Genes from all twelve of the KEGG pathways were predicted to occur. Seven pathways contained less than twenty-five genes. The predicted genes were lowest for xenobiotics metabolism by cytochrome P450 and ethylbenzene biodegradation and highest for benzoate biodegradation. Notable trends include the occurrence of the first genes for trinitrotoluene and 2,4-dinitrotoluene degradation. Also, the complete path from toluene to benzoyl-CoA was predicted. Twenty-two of the dioxin pathway genes were predicted, including genes within the first steps. The following phylotypes were associated with the greatest number of pathways: unclassified Burkholderiaceae, Burkholderia-Caballeronia-Paraburkholderia, Pseudomonas, Rhodococcus, unclassified Betaproteobacteria, and Polaromonas. This work illustrates the value of PICRUSt2 for predicting biodegradation potential and suggests that a subset of phylotypes could be important for the breakdown of organic contaminants or their metabolites. KEY POINTS: • The approach is a low-cost alternative to shotgun sequencing. • The genes and phylotypes encoding for xenobiotic degradation were predicted. • A subset of phylotypes were associated with many pathways.
Read full abstract