We studied the intersystem crossing (ISC) property of red-light absorbing heavy atom-free dihydronaphtho[b]-fused Bodipy derivatives (with phenyl group attached at the lower rim via ethylene bridge, taking constrained geometry, i.e., BDP-1 and the half-oxidized product BDP-2) and dispiroflourene[b]-fused Bodipy (BDP-3) that have a twisted π-conjugated framework. BDP-1 and BDP-3 show strong and sharp absorption bands (i.e., ε = 2.0 × 105 M-1 cm-1 at 639 nm, fwhm ∼491 cm-1 for BDP-3). BDP-1 is significantly twisted (φ = 21.6°), while upon mono-oxidation, BDP-2 becomes nearly planar on the oxidized side (φ = 3.5°). Interestingly, BDP-2 showed efficient ISC (triplet state quantum yield, ΦT = 40%) due to S1/T2 state energy matching. Long-lived triplet excited state was observed (τT = 212 μs in solution and 2.4 ms in polymer matrix), and ISC takes 4.0 ns. Differently, twisted BDP-1 gives weak ISC only 5%, ISC takes 7.7 ns, and the triplet state is populated only with addition of ethyl iodide. Time-resolved electron paramagnetic resonance spectra of BDP-1 revealed the coexistence of two triplet states, with drastically different zero-field splitting D parameters of -2047 MHz and -1370 MHz, respectively, along with varying sublevel population ratios. We demonstrate that the ISC is not necessarily enhanced by torsion of the π-conjugation framework; instead, S1/Tn state energy matching is more efficient to induce ISC even in compounds that have planar molecular structures.
Read full abstract