Ethnopharmacological relevanceFlos Trollii (FT) is the dried flower of Trollius Chinensis Bunge of Ranunculaceae with the pharmacological properties of anti-inflammatory, antibacterial, antiviral, anti-oxidative. The herb FT is not only a traditional Chinese medicine (TCM) but also an extensively utilized ethnic medicine, employed by diverse ethnic groups including Mongolian, Tibetan, and Kazakh. Aim of studyFT was taken as an example to construct a strategy of quality markers (Q-markers) identification based on effect, property flavor material basis, and rapid quantitative evaluation using near-infrared (NIR) spectroscopy and chemometric methods of TCM. Materials and methodsInitially, the anti-inflammatory efficacy of FT from three places of origin was evaluated using the RAW264.7-cell inflammatory model, and the bitter property flavor was characterized using an electronic tongue. The high-performance liquid chromatography(HPLC) fingerprint of FT was generated, and the quality of FT from different origins was evaluated employing chemometrics. Next, potential anti-inflammatory and bitter property flavor compounds were screened utilizing a fingerprinting-effect relationship and fingerprinting-property flavor relationship model using partial least squares regression (PLSR). The Q-markers of the FT were confirmed based on the testability principle. Then, a swift, uncomplicated, and precise Q-marker content of the FT prediction model was developed by adopting NIR. ResultsThe main common fingerprinting peaks affecting FT's efficacy and property flavor were screened. Five of these compounds, 2″-O-beta-L-galactopyranosylorientin, orientin, vitexin, veratric acid, and isoquercitrin, characterized using HPLC and ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS), could be regarded as Q-markers of FT. Q-marker content of the FT prediction model developed adopting NIR spectroscopy was rapid and effective. ConclusionAccording to the strategy proposed in this study, a quantitative NIR spectroscopic method to identify Q-markers could be a tool to improve the QC efficiency of TCM.
Read full abstract