Artificial Intelligence (AI) and Machine Learning (ML) are revolutionizing various scientific and clinical disciplines including pharmacogenomics (PGx) by enabling the analysis of complex datasets and the development of predictive models. The integration of AI and ML with PGx has the potential to provide more precise, data-driven insights into new drug targets, drug efficacy, drug selection, and risk of adverse events. While significant effort to develop and validate these tools remain, ongoing advancements in AI technologies, coupled with improvements in data quality and depth is anticipated to drive the transition of these tools into clinical practice and delivery of individualized treatments and improved patient outcomes. The successful development and integration of AI-assisted PGx tools will require careful consideration of ethical, legal, and social issues (ELSI) in research and clinical practice. This paper explores the intersection of PGx with AI, highlighting current research and potential clinical applications, and ELSI including privacy, oversight, patient and provider knowledge and acceptance, and the impact on patient-provider relationship and new roles.
Read full abstract