The effect of Pt addition on the performance of Ni/CeO2 catalyst for the low temperature steam reforming of ethanol is investigated. The reaction mechanism was explored using diffuse reflectance infrared spectroscopy under reaction conditions and temperature-programmed surface reaction of ethanol. The addition of Pt to Ni/CeO2 catalyst promoted the decomposition of dehydrogenated and acetate species to hydrogen, methane, CO and carbonate species. Furthermore, the presence of Pt reduced the rate of catalyst deactivation. In situ X-ray absorption studies revealed the formation of a nickel carbide phase during steam reforming of ethanol over Ni/CeO2 catalyst, which was associated with amorphous carbon deposition and catalyst deactivation. X-ray photoelectron spectroscopy in combination with kinetic and structural data was consistent with a partial Pt monolayer on Ni in the bimetallic catalyst. The segregation of Pt on the surface of the Ni particles minimized the formation of nickel carbide and promoted catalyst stability.