The progress of research focused upon the etching of metal films or substrates using fluorine gases has been restricted by limited information regarding etching reactants and byproducts. Indeed, aspects of the etching mechanism itself remain unclear. In this study, a new reactive force field (ReaxFF) for Al–F was developed to describe the interaction and reactions in Al–F materials. The ReaxFF accurately reproduces the quantum mechanics derived training set for structures and energies of gaseous AlFx molecules and Al–F crystals. Based on this Al–F ReaxFF, the effects of chemical source (F/Al = 1–6) and temperature (1000–1500 K) on the etching product and rate were studied. The formation of gaseous AlFx was revealed in five steps with the fluorine concentration being the prime factor affecting the etching products. Below the critical concentration ratio of F/Al = 3, where the chemical driving force is insufficient, only four of the five steps occur and a AlFx cluster is formed without significant gaseous s...
Read full abstract