This article describes a simple method to fabricate uniform porous antireflective (AR) coatings composed of nanoflakes on the surface of soda lime glass through one-step hydrothermal alkali (NaOH) etching process. Experimental conditions including reaction temperature, NaOH concentration, and reaction time were investigated to find the optimal etching conditions, and the maximum transmittance increases from 90.5% to 98.5%. The coating thickness increases with increase in the NaOH concentration, leading to the tunable red-shift of transmission and reflection spectra in the UV and entire visible range. And the corresponding uniform structural reflected colors varying from gray, pale yellow, yellow, pink, blue to pale blue are observed when the etched glasses are viewed in reflected light. The relationship of coating thickness, transmittance, reflectance, and reflected color was obtained and discussed. The etched glass after introducing TiO2 component onto the porous coating had AR, self-cleaning (superhydrophilic and photocatalytic) and antifogging properties. It is conceivable that such etched glasses would have broad potential applications in optical devices, solar cells, light emitting diodes, and varied window glasses.
Read full abstract