The study of large prospective collections of plasma samples from women prior to the development of breast cancer has firmly established certain sex steroids as being significantly associated with risk. The strongest associations have been found in postmenopausal women in whom the within person variability of most hormones is markedly reduced but some positive associations have also been seen in premenopausal women. Plasma estrogens show the strongest correlations with risk and these are strengthened by measurement or calculation of the proportion of estradiol that circulates free of sex hormone binding globulin (SHBG), consistent with this being the most active fraction. The relationships have been reported to potentially explain virtually all of the association of breast cancer with body mass index in postmenopausal women; this is likely to be due to non-ovarian estrogen synthesis being prominent in subcutaneous fat. These strong relationships have led to plasma and urine estrogen levels being used as intermediate end-points in the search for genes that affect breast cancer risk via their role in steroid disposition. Plasma androgen levels also show a relationship with breast cancer risk that is weakened but not eliminated by ‘correction’ for estrogen levels. This has been argued to be evidence of the local production of estrogens being important in the etiology of breast cancer. Given that plasma steroid levels do not correlate closely with mammographic density, which is strongly associated with risk, the opportunity exists to combine the two factors in assessing breast cancer risk but the low availability of suitable estrogen assays is a major impediment to this. In established breast cancer, plasma estrogens have been found to correlate with gene expression of estrogen dependent genes and the expression of these varies across the menstrual cycle of premenopausal women.There is infrequently a need for routine measurement of plasma estrogen levels but it has been important in the comparative pharmacology and dose-related effectiveness of aromatase inhibitors. Measurement may be needed to identify residual ovarian function in women who have amenorrhea subsequent to cytotoxic chemotherapy indicating their unsuitability for aromatase inhibitor treatment. Use of highly sensitive assays has also revealed that the association between BMI and plasma estrogen levels persists in patients on 3rd generation aromatase inhibitors and that measurable increments in plasma estrogen levels occur with some vaginal estrogen preparations that are of concern in relation to treatment efficacy.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access