Computing small failure probabilities is often of interest in the reliability analysis of engineering systems. However, this task can be computationally demanding since many evaluations of expensive high-fidelity models are often required. To address this, a multi-fidelity approach is proposed in this work within the setting of stratified sampling. The overall idea is to reduce the required number of high-fidelity model runs by integrating the information provided by different levels of model fidelity while maintaining accuracy in estimating the failure probabilities. More specifically, strata-wise multi-fidelity models are established based on Gaussian process models to efficiently predict the high-fidelity response and the system collapse from the low-fidelity response. Due to the reduced computational cost of the low-fidelity models, the multi-fidelity approach can achieve a significant speedup in estimating small failure probabilities associated with high-fidelity models. The effectiveness and efficiency of the proposed multi-fidelity stochastic simulation scheme are validated through an application to a two-story two-bay steel building under extreme winds.
Read full abstract