BackgroundThere is growing attention to individuality in movement, its causes and consequences. Similarly to other well-established personality traits (e.g., boldness or sociability), conspecifics also differ repeatedly in their spatial behaviors, forming behavioral types (“spatial-BTs”). These spatial-BTs are typically described as the difference in the mean-level among individuals, and the intra-individual variation (IIV, i.e., predictability) is only rarely considered. Furthermore, the factors determining predictability or its ecological consequences for broader space-use patterns are largely unknown, in part because predictability was mostly tested in captivity (e.g., with repeated boldness assays). Here we test if (i) individuals differ in their movement and specifically in their predictability. We then investigate (ii) the consequences of this variation for home-range size and survival estimates, and (iii) the factors that affect individual predictability.MethodsWe tracked 92 barn owls (Tyto alba) with an ATLAS system and monitored their survival. From these high-resolution (every few seconds) and extensive trajectories (115.2 ± 112.1 nights; X̅ ± SD) we calculated movement and space-use indices (e.g., max-displacement and home-range size, respectively). We then used double-hierarchical and generalized linear mix-models to assess spatial-BTs, individual predictability in nightly max-displacement, and its consistency across time. Finally, we explored if predictability levels were associated with home-range size and survival, as well as the seasonal, geographical, and demographic factors affecting it (e.g., age, sex, and owls’ density).ResultsOur dataset (with 74 individuals after filtering) revealed clear patterns of individualism in owls’ movement. Individuals differed consistently both in their mean movement (e.g., max-displacement) and their IIV around it (i.e., predictability). More predictable individuals had smaller home-ranges and lower survival rates, on top and beyond the expected effects of their spatial-BT (max-displacement), sex, age and ecological environments. Juveniles were less predictable than adults, but the sexes did not differ in their predictability.ConclusionThese results demonstrate that individual predictability may act as an overlooked axis of spatial-BT with potential implications for relevant ecological processes at the population level and individual fitness. Considering how individuals differ in their IIV of movement beyond the mean-effect can facilitate understanding the intraspecific diversity, predicting their responses to changing ecological conditions and their population management.