Fe-OC is crucial for SOC preservation in the global ecosystem. However, there is still significant uncertainty in the determination methods of Fe-OC, and these methods are often not calibrated to each other, making the Fe-OC content by different methods impossible to compare. Here, Fe-OC is analyzed by the CBD method and the SD method from 45 soils from different land types (e.g., wetland, grassland, and forest) to compare and analyze the uncertainty and influencing factors between the two methods. Our results showed that the Fe-OC contributions to SOC (fFe-OC) measured by CBD and SD methods were significantly lower in the wetland ecosystem than in grassland and forest ecosystems. The Fe-OC content and fFe-OC in the grassland ecosystem was significantly higher using the CBD method compared to the SD method, with no significant difference between the methods in wetland and forest ecosystems. The random forest model revealed that Fe-OCCBD content was mainly affected by C/N, Clay%, and TC, whereas SOC, total nitrogen, and soil inorganic carbon were the main influences on Fe-OCSD. Taken together, our findings highlight the importance of incorporating ecosystem types and soil properties into soil carbon estimation models when predicting and estimating Fe-OC and its contribution to SOC.
Read full abstract