This study aimed to compare the effects of various dietary selenium (Se) sources (0.5 mg/kg) on performance, meat quality, and antioxidant capacity in broilers as well as essential trace elements concentrations in their blood and tissues. A total of 360 one-day-old male yellow-feathered chickens (37.00 ± 0.17 g) were randomly allocated to 5 diet treatments: the basal diet (CON) and 4 diets supplemented with sodium selenite (SS), selenomethionine (SM), selenium-enriched yeast (SY), and nano-selenium (NS) for 56 d, respectively, with 6 replicates per treatment and 12 chickens per replicate. Dietary Se supplementation did not affect growth performance and carcass characteristics in broilers (P > 0.05). Supplemental SM enhanced the redness in the pectoral muscle compared to CON and NS (P < 0.05). Supplementation of SY and NS improved the concentrations of Se, copper, manganese, and zinc in the serum (P < 0.05). Supplemental SS also elevated the zinc content in the serum (P < 0.05). Broilers fed the SY diet showed increased Se content in the liver and pectoral muscle compared to those fed CON, SM, and NS diets (P < 0.05). Also, SY improved the pectoral muscle Se concentration compared to SS (P < 0.05). Besides, dietary Se supplementation increased the Se content in the thigh muscle (P < 0.05), with SY showing highest Se deposition. Dietary supplementation with SS, SM, and NS improved the activities of total superoxide dismutase and total antioxidant capacity (T-AOC) in the serum (P < 0.05). Supplemental SY also elevated the T-AOC in the serum (P < 0.05). Additionally, SS and SM enhanced the T-AOC in the liver (P < 0.05). In conclusion, supplemental SM affected meat color. Supplementing diets with various Se sources increased antioxidant capacity and Se content in the thigh muscle of broilers, with SY showing a more pronounced deposition efficiency. Besides, diets supplemented with different Se sources had variable effects on the concentrations of essential trace elements in the serum and tissues of broilers.