Hall Effect Thrusters (HETs) are promising electric propulsion devices for the station-keeping of geostationary satellites (more than 120 in orbit to date). Moreover, they can offer a cost-effective solution for interplanetary journey, as proved by the recent ESA SMART-1 mission to the Moon. The main limiting factor of the HETs lifetime is the erosion of the annular channel ceramics walls. In order to provide a better understanding of the energy deposition on the insulated walls, a laser irradiation study has been carried out on a PPS100-ML thruster during its run in the PIVOINE-2G ground test facility (CNRS Orleans, France). Two distinct approaches have been followed: continuous wave fiber laser irradiation (generation of thermal defects) and nanosecond pulsed laser ablation (generation of topological defects). The irradiated zones have been monitored in situ by IR thermography and optical emission spectroscopy and further investigated ex situ by scanning electron microscopy and profilometry.
Read full abstract