This study explores an eco-friendly method for synthesizing Cobalt oxide nanoparticles (Co3O4NPs) using extracted carboxymethyl cellulose (CMC) as a reducing and stabilizing agent. The Co3O4NPs, characterized via various analyses, demonstrated a crystalline structure with sizes ranging from 10.9 to 28.2 nm. Microscopic imaging confirmed a uniform spherical morphology with an average diameter of 27.2 nm. The biological activities of Co3O4NPs were investigated extensively, highlighting their superior antibacterial efficacy compared to amoxicillin-clavulanic acid. These nanoparticles exhibited potent antioxidant properties and demonstrated safety for potential applications based on erythrocyte viability results. Additionally, Co3O4NPs displayed significant potency against Michigan Cancer Foundation-7 (MCF-7) breast cancer cells and showed promising α-amylase enzyme inhibitory activity, highlighting their multifunctional therapeutic potential as antioxidant, antibacterial, anticancer, and alpha-amylase inhibition assay.