Abstract Recent several studies have focused on the predictability of tropical cyclone track forecast. As a response to the question issued by Landsea and Cangialosi (2018) about "the approaching limit of predictability for tropical cyclone (TC) track prediction is near or has already been reached", Zhou and Toth (2020) (short for ZT20) and Yu et al. (2022) (short for Y22) have found that the limit of predictability for TC track prediction has not been reached both in Atlantic (ATL) and Western North Pacific (WNP) basins. However, the predictabilities are different in two basins, as ZT20 found that 1 day's improvement can be obtained through 10 years in ATL, while Y22 found that 2 days' improvement can be obtained through 15 years in WNP. To reveal the causes of this difference, the predictability of TC track in WNP is first investigated under the same framework as ZT20. Then important parameters that determined the predictabilities are found and analyzed. Results suggested that the growth rate of true track forecast error in WNP is higher than that in ATL, indicating a lower predictability in WNP. Further explorations suggested that TCs in WNP basin have averagely larger sizes, stronger intensities, lower-latitude locations, and poorer forecast skills of their guided flows. All these factors contribute to the larger track forecast error growth rate. Moreover, it is pointed out that as the improvement of forecast skills over years mainly due to the reduction of initial analysis errors, although a lower predictability is found in WNP, the forecast skill improvement in WNP is faster than that in ATL.
Read full abstract