Activation function has a significant impact on the dynamics, convergence, and performance of deep neural networks. The search for a consistent and high-performing activation function has always been a pursuit during deep learning model development. Existing state-of-the-art activation functions are manually designed with human expertise except for Swish. Swish was developed using a reinforcement learning-based search strategy. In this study, we propose an evolutionary approach for optimizing activation functions specifically for image classification tasks, aiming to discover functions that outperform current state-of-the-art options. Through this optimization framework, we obtain a series of high-performing activation functions denoted as Exponential Error Linear Unit (EELU). The developed activation functions are evaluated for image classification tasks from two perspectives: (1) five state-of-the-art neural network architectures, such as ResNet50, AlexNet, VGG16, MobileNet, and Compact Convolutional Transformer, which cover computationally heavy to light neural networks, and (2) eight standard datasets, including CIFAR10, Imagenette, MNIST, Fashion MNIST, Beans, Colorectal Histology, CottonWeedID15, and TinyImageNet which cover from typical machine vision benchmark, agricultural image applications to medical image applications. Finally, we statistically investigate the generalization of the resultant activation functions developed through the optimization scheme. With a Friedman test, we conclude that the optimization scheme is able to generate activation functions that outperform the existing standard ones in 92.8% cases among 28 different cases studied, and −x⋅erf(e−x) is found to be the best activation function for image classification generated by the optimization scheme.
Read full abstract