Soil erosion has always been a critical issue confronting watershed environments, impacting the progress of sustainable development. As an increasing number of countries turn their attention to this problem, numerous policies have been enacted to halt the progression of soil erosion. However, policy-driven interventions often lead to significant changes in watershed vegetation coverage, under which circumstances, the original sediment erosion models may fall short in terms of simulation accuracy. Taking the Kuye River watershed as the research subject, this study investigates soil erosion data spanning from 1981 to 2015 and utilizes the Revised Universal Soil Loss Equation (RUSLE) model to simulate soil erosion. It is found that the extensive planting of vegetation after 2000 has led to a rapid reduction in soil erosion within the Kuye River watershed. The original vegetation cover and management factor (C) proves inadequate in predicting the abrupt changes in vegetation coverage. Consequently, this study adopts two improved plant cover and management factor equations. We propose two new methods for calculating the vegetation cover and management factor, one using machine learning techniques and the other employing a segmented calculation approach. The machine learning approach utilizes the Eureqa software (version11.0, Cornell University, New York, American) to search for the relationship between Normalized Difference Vegetation Index (NDVI) and C, ultimately establishing an equation that describes this relationship. On the other hand, the piecewise method determines critical values based on data trends and provides separate formulas for C above and below these critical values. Both methods have achieved superior calculation accuracy. Specifically, the overall data calculation using the machine learning method achieved an determined coefficient (R2) of 0.5959, while the segmented calculation method achieved an R2 of 0.6649. Compared to the R2 calculated by the traditional RULSE method, these two new methods can more accurately predict soil erosion. The findings of this study can provide valuable theoretical reference for water and soil prediction in watersheds.
Read full abstract