This paper proposes a nonlinear interval finite element method for elastic–plastic analysis of structures with spatially uncertain parameters. The spatially uncertain parameters are described by the interval field, and the variation bounds of the elastic–plastic structural responses can be calculated effectively. Quantified by the interval field, the spatially uncertain parameters are represented by the interval Karhunen–Loève (K-L) expansion, based on which the nonlinear interval finite element equilibrium equation is formulated. An interval iterative method is then presented to solve the equilibrium equation and obtain an outer solution of the variation bounds of structural responses such as displacement. In this method, the Newton-Raphson iterative method is used to transform the nonlinear problem into a linear one, and then the interval iterative method is introduced to solve the interval linear equations. Three numerical examples are employed to illustrate the feasibility and accuracy of the proposed method.
Read full abstract