At present, the results of the study of boundary value problems for the two-dimensional Helmholtz equation with one and two singular coefficients are known. In the presence of two positive singular coefficients in the two-dimensional Helmholtz equation, explicit solutions of the Dirichlet, Neumann and Dirichlet-Neumann problems in a quarter plane are expressed through a confluent hypergeometric function of two variables. The established properties of the confluent hypergeometric function of two variables allow us to prove the theorem of uniqueness and existence of a solution to the problems posed.In this paper, we study the Dirichlet, Neumann, and Dirichlet-Neumann problems for the three-dimensional Helmholtz equation at zero values of singular coefficients in an octant, a quarter of space, and a half-space. Uniqueness and existence theorems are proved under certain restrictions on the data. The uniqueness of solutions of which is proved using the extremum principle for elliptic equations. Using the known fundamental (singular) solution of the Helmholtz equation, solutions to the problems under study are written out in explicit forms. В настоящее время известны результаты исследования краевых задач для двумерного уравнения Гельмгольца с одним и двумя сингулярными коэффициентами. При наличии двух положительных сингулярных коэффициентов в двумерном уравнении Гельмгольца явные решения задач Дирихле, Неймана и Дирихле-Неймана в четверти плоскости выражаются через вырожденную гипергеометрическую функцию двух переменных. Установленные свойства вырожденной гипергеометрической функции двух переменных позволяют доказать теорему единственности и существования решения поставленных задач. В данной работе изучаются задачи Дирихле, Неймана и Дирихле-Неймана для трехмерного уравнения Гельмгольца при нулевых значениях сингулярных коэффициентов в октанте, четверти пространства и полупространстве. Доказываются теоремы единственности и существования при определенных ограничениях на данные.Единственность решений которых доказывается с помощью принципа экстремума для эллиптических уравнений. Используя известное фундаментальное (сингулярное) решение уравнения Гельмгольца, решения исследуемых задач выписываются в явном виде.
Read full abstract