Protein function is modulated by coupled solvent fluctuations, subject to the degree of confinement from the surroundings. To identify universal features of the external confinement effect, the temperature dependence of the dynamics of protein-associated solvent over 200-265 K for proteins representative of different classes and sizes is characterized by using the rotational correlation time (detection bandwidth, 10-10-10-7 s) of the electron paramagnetic resonance (EPR, X-band) spin probe, TEMPOL, which is restricted to regions vicinal to protein in frozen aqueous solution. Weak (protein surrounded by aqueous-dimethylsulfoxide cryosolvent mesodomain) and strong (no added crysolvent) conditions of ice boundary confinement are imposed. The panel of soluble proteins represents large and small oligomeric (ethanolamine ammonia-lyase, 488 kDa; streptavidin, 52.8 kDa) and monomeric (myoglobin, 16.7 kDa) globular proteins, an intrinsically disordered protein (IDP, β-casein, 24.0 kDa), an unstructured peptide (protamine, 4.38 kDa) and a small peptide with partial backbone order (amyloid-β residues 1-16, 1.96 kDa). Expanded and condensate structures of β-casein and protamine are resolved by the spin probe under weak and strong confinement, respectively. At each confinement condition, the soluble globular proteins display common T-dependences of rotational correlation times and normalized weights, for two mobility components, protein-associated domain, PAD, and surrounding mesodomain. Strong confinement induces a detectable PAD component and emulation of globular protein T-dependence by the amyloid-β peptide. Confinement uniformly impacts soluble globular protein PAD dynamics, and is therefore a generic control parameter for modulation of soluble globular protein function.
Read full abstract