The significance that Epithermal Neutron Activation Analysis (ENAA) play in the field of science research, technology and innovations and how humans interact with elemental components in food chain and environment, has led to the development of ENAA protocol in research reactors. Epithermal neutrons, which have energy between 0.5 eV and 0.5 MeV, are increasingly needed by reactor clients. In this study, we have examined the activity of the flux monitor in the irradiation site of the inner channel (A1) of Nigeria Research Reactor-1 (NIRR-1) after its conversion to low enriched uranium fuel. The flux monitor (Al-0.1%Au thin wires) was washed with acetone, dried for 2 minutes, weighed to be 0.0122 g, and was thereafter placed in a 15.0 mm internal diameter polyethylene vials that has 1 mm wall thickness for irradiation. The activity of flux monitor Al-0.1%Au wire of 0.0122 g was calculated to be 5 x 108 count/s.g using A1 inner channels of the Cd line. This value obtained in this our studies found to be consistent with previous result and has shown that the epithermal channel A1 of the NIRR-1 remain suitable for ENAA after the reactor’s fuel conversion from HEU to LEU.
Read full abstract