Cholesterol is essential for a variety of functions in endocrine-related cells, including hormone and steroid production. We have reviewed the progress to date in research on the role of the main cholesterol-containing lipoproteins; low-density lipoprotein (LDL) and high-density lipoprotein (HDL), and their impact on intracellular cholesterol homeostasis and carcinogenic pathways in endocrine-related cancers. Neither LDL-cholesterol (LDL-C) nor HDL-cholesterol (HDL-C) was consistently associated with endocrine-related cancer risk. However, preclinical studies showed that LDL receptor plays a critical role in endocrine-related tumor cells, mainly by enhancing circulating LDL-C uptake and modulating tumorigenic signaling pathways. Although scavenger receptor type BI-mediated uptake of HDL could enhance cell proliferation in breast, prostate, and ovarian cancer, these effects may be counteracted by the antioxidant and anti-inflammatory properties of HDL. Moreover, 27-hydroxycholesterol a metabolite of cholesterol promotes tumorigenic processes in breast and epithelial thyroid cancer. Furthermore, statins have been reported to reduce the incidence of breast, prostate, pancreatic, and ovarian cancer in large clinical trials, in part because of their ability to lower cholesterol synthesis. Overall, cholesterol homeostasis deregulation in endocrine-related cancers offers new therapeutic opportunities, but more mechanistic studies are needed to translate the preclinical findings into clinical therapies.