Peritoneal metastases prevalently occur in ovarian cancer, deteriorating patient prognosis. During the metastatic cascade, tumor plasticity enables cells to adapt to environmental changes, thereby facilitating dissemination. We previously found that epithelial splicing regulatory protein 1 (ESRP1) is linked to peritoneal metastasis and epithelial-mesenchymal plasticity in ovarian cancer. This study delves into the underlying mechanism. We found that ESRP1 preserves epithelial plasticity in ovarian cancer cells in vitro and in vivo. Functionally, ESRP1 enhances ovarian cancer cell growth and peritoneal dissemination. High-throughput sequencing revealed several ESRP1-related epithelial RNAs, encompassing both linear and circular forms. Specifically, ESRP1 triggers the cyclization of circPAFAH1B2 and circUBAP2 through binding to the GGU sequences in adjacent introns. The two ESRP1-induced circular RNAs stabilize DKK3 and AHR mRNAs, which are critical for epithelial plasticity, through interaction with IGF2BP2. Collectively, ESRP1 triggers the formation of circPAFAH1B2 and circUBAP2, which in turn stabilizes DKK3 and AHR through IGF2BP2 binding, thereby modulating the epithelial plasticity and aiding the peritoneal spread of ovarian cancer cells. The findings unveiled a biological network, orchestrated by ESRP1, that governs the epithelial-mesenchymal plasticity of ovarian cancer cells, emphasizing the therapeutic potential of ESRP1 and its induced circular RNAs for ovarian cancer treatment.