Anthropogenic hydrological regulation is profoundly altering the structure and function of wetland ecosystems. Due to the scarcity of long-term monitoring records, the responses of wetland ecosystems to anthropogenic hydrological regulation remain unclear. We reconstructed past ecohydrological changes in Dajiuhu Wetland during the last 40 years and explored the driving forces, based on multiproxy records of a 44-cm-length sediment core collected from Wuhaohu Lake of Dajiuhu Wetland in Shennongjia, Hubei. The results showed that the diatom community in Wuhaohu Lake had experienced three major stages, including the dominance of benthic diatoms between 1980 and 2008, the rapid increase in planktonic diatoms between 2008 and 2016, and the dominance of small-sized fragilarioid species after 2016. Results of redundancy analysis showed that change in diatom assemblage was significantly correlated with total organic carbon, total nitrogen and the ratios of Mn to Fe. Diatom floral changes after 2008 indicated the shift of Wuhaohu Lake from an early organic-rich peatland to a shallow lake, mainly in response to an increase in water table driven by damming. From 2016, the increases in benthic and epiphytic diatoms responded to the expansion of aquatic plants and improved light penetration after the relocation of local population. Sedimentary diatom records revealed the process of environmental changes, and hence would provide a scientific basis for the environmental protection of wetlands.