BackgroundMaternal nutrition during pregnancy and infant nutrition in the early postnatal period (lactation) are critically involved in the development and health of the newborn infant. The Maternal Nutrition and Offspring’s Epigenome (MANOE) study was set up to assess the effect of maternal methyl-group donor intake (choline, betaine, folate, methionine) on infant DNA methylation. Maternal intake of dietary methyl-group donors was assessed using a food-frequency questionnaire (FFQ). Before and during pregnancy, we evaluated maternal methyl-group donor intake through diet and supplementation (folic acid) in relation to gene-specific (IGF2 DMR, DNMT1, LEP, RXRA) buccal epithelial cell DNA methylation in 6 months old infants (n = 114) via pyrosequencing. In the early postnatal period, we determined the effect of maternal choline intake during lactation (in mothers who breast-fed for at least 3 months) on gene-specific buccal DNA methylation (n = 65).ResultsMaternal dietary and supplemental intake of methyl-group donors (folate, betaine, folic acid), only in the periconception period, was associated with buccal cell DNA methylation in genes related to growth (IGF2 DMR), metabolism (RXRA), and appetite control (LEP). A negative association was found between maternal folate and folic acid intake before pregnancy and infant LEP (slope = −1.233, 95% CI −2.342; −0.125, p = 0.0298) and IGF2 DMR methylation (slope = −0.706, 95% CI −1.242; −0.107, p = 0.0101), respectively. Positive associations were observed for maternal betaine (slope = 0.875, 95% CI 0.118; 1.633, p = 0.0241) and folate (slope = 0.685, 95% CI 0.245; 1.125, p = 0.0027) intake before pregnancy and RXRA methylation. Buccal DNMT1 methylation in the infant was negatively associated with maternal methyl-group donor intake in the first and second trimester of pregnancy and negatively in the third trimester. We found no clear association between maternal choline intake during lactation and buccal infant DNA methylation.ConclusionsThis study suggests that maternal dietary and supplemental intake of methyl-group donors, especially in the periconception period, can influence infant’s buccal DNA methylation in genes related to metabolism, growth, appetite regulation, and maintenance of DNA methylation reactions.
Read full abstract