Conventional alginate microcapsules are widely used for encapsulating therapeutic cells to reduce the host immune response. However, the exchange of monovalent cations with divalent cations for crosslinking can lead to a sol-gel phase transition, resulting in gradual degradation and swelling of the microcapsules in the body. To address this limitation, we present a biocompatible and nondegradable epigallocatechin-3-gallate (EGCG)-based microencapsulation with ethylamine-bridged EGCG dimers (EGCG(d)), denoted as ‘Epi-Capsules’. These Epi-Capsules showed increased physical properties and Ca2+ chelating resistance compared to conventional alginate microcapsules. Horseradish peroxidase (HRP) treatment is very effective in increasing the stability of Epi-Capsule((+)HRP) due to the crosslinking between EGCG(d) molecules. Interestingly, the Epi-Capsules(oxi) using a pre-oxidized EGCG(d) can support long-term survival (>90 days) of xenotransplanted insulin-secreting islets in diabetic mice in vivo, which is attributed to its structural stability and reactive oxygen species (ROS) scavenging for lower fibrotic activity. Collectively, this EGCG-based microencapsulation can create Ca2+ chelating-resistance and anti-oxidant activity, which could be a promising strategy for cell therapies for diabetes and other diseases.