Bispecific Tcell engagers (BiTEs) are bispecific antibodies that redirect Tcells to target antigen-expressing tumors. We hypothesized that BiTE-secreting Tcells could be a valuable therapy in solid tumors, with distinct properties in mono- or multi-valent strategies incorporating chimeric antigen receptor (CAR) Tcells. Glioblastomas represent a good model for solidtumor heterogeneity, representing a significant therapeutic challenge. We detected expression of tumor-associated epidermal growth factor receptor (EGFR), EGFR variant III, and interleukin-13 receptor alpha 2 (IL13Rα2) on glioma tissues and cancer stem cells. These antigens formed the basis of a multivalent approach, using a conformation-specific tumor-related EGFR targeting antibody (806) and Hu08, an IL13Rα2-targeting antibody, as the single chain variable fragments to generate new BiTE molecules. Compared with CAR Tcells, BiTE Tcells demonstrated prominent activation, cytokine production, and cytotoxicity in response to target-positive gliomas. Superior response activity was also demonstrated in BiTE-secreting bivalent Tcells compared with bivalent CAR Tcells in a glioma mouse model at early phase, but not in the long term. In summary, BiTEs secreted by mono- or multi-valent Tcells have potent anti-tumor activity invitro and invivo with significant sensitivity and specificity, demonstrating a promising strategy in solid tumor therapy.