Vδ1 T cells are a subpopulation of γδT cells found in human dermis. In contrast to murine skin-resident γδT cells, much less is known regarding their role and function in skin health and disease. Here we report the successful integration of Vδ1 T cells into long-term fibroblast-derived matrix skin equivalents (SE). We isolated Vδ1 T cells from human blood, where they are rare, and established conditions for the integration and maintenance of the freshly isolated Vδ1 T cells in the SEs. Plated on top of the dermal equivalents (DEs), almost all Vδ1 T cells migrated into the dermal matrix where they exerted their influence on both the DE and the epithelium. Vδ1 T cells contributed to epidermal differentiation as indicated by histology, expression of epidermal differentiation markers and RNAseq expression profile. When complemented with the carcinoma-derived SCC13 cells instead of HaCaT, our data suggest a role for Vδ1 T cells in slowing growth of the tumor cells, as indicated by reduced stratification and changes in gene expression profiles. Together, we demonstrate the successful establishment of human Vδ1 T cell-competent skin and skin carcinoma equivalents (SE, SCE) and provide evidence for molecular and functional consequences of the Vδ1 T cells on their respective environment.
Read full abstract