In this research, the analytical method was developed and evaluated for determining phenol and its nine derivatives belong to the US EPA priority pollutant list in water samples by using dual-channeled capillary electrophoresis (CE) coupled with two types of optical detectors, namely LED-induced fluorescence (LEDIF) and ultraviolet (UV) detectors. The optimal background electrolytes for the first and second CE channels were 20 mM borate (pH 9.80) with 400 µM fluorescein and 55 mM borate (pH 11.75), respectively. The two-step liquid-liquid extraction (LLE) was used for sample preparation and enrichment, in which phenol and its derivatives were extracted from the aqueous phase using 10 mL of n-hexane/1-octanol (60/40, v/v) and then were back extracted into a 0.1 M NaOH as a final acceptor phase. Under the optimal CE and two-step LLE conditions, the enrichment factors of 10 phenols were 184 – 1120-fold, and the method detection limits were lowered to 0.02–0.60 µg/L. The obtained intra-day and inter-day precisions in terms of relative standard deviations (RSD) were between 4.0 and 7.3 % and 6.7 and 14 %, respectively. This approach was used to determine phenols in water samples, with recoveries ranging from 82.0 to 108.9 %. In combination with sample enrichment by two-step LLE extraction, this is the first CE study conducted to determine phenols in the EPA list using two detector approaches, specifically CE-LEDIF/CE-UV.
Read full abstract