Eosinophilic esophagitis (EoE) is a chronic allergic disease characterized by esophageal dysfunction, type-2 inflammation, and esophageal eosinophilic infiltrate. While proton pump inhibitor (PPI) therapy is commonly used for EoE management, the underlying mechanism of action remains unclear. Air-liquid interface culture of esophageal epithelial cells was employed to investigate the impact of the PPI omeprazole on barrier integrity in IL-13-treated cultures. Epithelial chemokine secretion was assessed following stimulation with IL-13 and omeprazole, and the migration of eosinophils from healthy human donors was evaluated using 3 μm pore-sized transwells. A co-culture system of epithelial cells and eosinophils was employed to study chemokine secretion and eosinophil adhesion and activation markers. Omeprazole treatment in the IL-13-treated air-liquid interface (ALI) model resulted in 186 differentially expressed genes and restored barrier integrity compared to ALI treated with IL-13 alone. Omeprazole treatment reduced STAT6 phosphorylation, downregulated calpain 14, and upregulated desmoglein-1 in the IL-13-treated air-liquid interface samples. IL-13-induced upregulation of Eotaxin-3, CXCL10, and periostin, but this was downregulated by omeprazole. Further, the expression of CD11b, CD18, and CD69 was lower on eosinophils from omeprazole-treated epithelial-eosinophil co-cultures, which also had lower levels of eotaxin-3, CXCL10, CCL2, and CCL4. Omeprazole reduced the effects of IL-13 in both the epithelial air-liquid interface model and eosinophil-epithelial co-cultures, reducing barrier dysfunction, chemokine expression, and upregulation of eosinophil adhesion markers.
Read full abstract