Thermo-responsive behavior of ethylene oxide (EO)-propylene oxide (PO) copolymers makes them suitable for many potential applications. Reproducing the origins of the tunable properties of EO-PO copolymers using coarse-grained (CG) models such as the MARTINI force field is critically important for building a better understanding of their behavior. In the present work, we have investigated the effects of coarse-graining on the water-polymer interaction across a temperature range. We compared the performance of different all-atom force fields to find the most appropriate one for the purpose of PO block parameterization in the MARTINI platform. We parameterized a CG temperature-dependent PO model based on the reproduction of the atomistic free energy of transfer of propylene oxide trimer from octane to water over a range of temperatures (20-60 °C) and compared the atomistic bond and angle distributions. Then, we used the model to study the effects of EO/PO ratio, molecular weight, and concentration on the thermo-responsive behavior of EO-PO copolymers in water. The results show an excellent agreement with experiments in different areas. Our temperature-dependent model reproduces (1) micellar phase above critical micelle temperature (CMT) and unimer phase below CMT for different Pluronics (a class of EO-PO triblock copolymers) spanning many EO/PO ratios and molecular weights; (2) spherical-to-rodlike micellar shape transition for Pluronics with 60 wt % of PO content or more; (3) diffusion coefficients for Pluronics with high PO content (P104 Pluronic with a PO mass of 3500 g mol-1) across a broad range of temperatures; and (4) micelle core size and micelle diameter similar to experimental results. Overall, our model improves the temperature sensitivity of EO-PO copolymers of existing models significantly, particularly for copolymers that are dominated by PO agents.