In traditional multienzyme random co-immobilization, it is difficult to precisely locate and regulate the relative positions between two enzyme molecules, resulting in low cascade efficiency between the two enzymes and limiting the application of multienzyme cascade catalysis technology. This study prepared PVAC@Y-dsDNA@GOD/HRP magnetic co-immobilized multienzyme by constructing a three-pronged DNA scaffold for co-coupling glucose oxidase (GOD) and horseradish peroxidase (HRP), which achieved directional co-immobilization of dual enzymes and precise regulation of inter-enzyme distance. Compared with traditional random co-immobilization of multienzyme, PVAC@Y-dsDNA@GOD/HRP could shorten the distance between GOD and HRP to the nanoscale and form substrate channeling, which greatly improved the cascade activity between the two enzymes. The inter-enzyme spacing between GOD and HRP could be precisely regulated by changing the length of DNA strands. When the inter-enzyme spacing was 10.08 nm, PVAC@Y-dsDNA@GOD/HRP exhibited high cascade activity of 707 U/mg. The inter-enzyme spacing that was too large or too small would reduce the cascade activity, indicating a distance-dependence of multienzyme cascade activity. PVAC@Y-dsDNA@GOD/HRP showed good reusability, indicating that the three-pronged DNA scaffold constructed by DNA double strands hybridization could firmly immobilize enzyme on carrier, with less enzyme leakage.
Read full abstract