The agricultural waste sugarcane bagasse (SCB) is a kind of plentiful biomass resource. In this study, different pretreatment methods (NaOH, H2SO4, and sodium percarbonate/glycerol) were utilized and compared. Among the three pretreatment methods, NaOH pretreatment was the most optimal method. Response surface methodology (RSM) was utilized to optimize NaOH pretreatment conditions. After optimization by RSM, the solid yield and lignin removal were 54.60 and 82.30% under the treatment of 1% NaOH, a time of 60 min, and a solid-to-liquid ratio of 1:15, respectively. Then, the enzymolysis conditions of cellulase for NaOH-treated SCB were optimized by RSM. Under the optimal enzymatic hydrolysis conditions (an enzyme dose of 18 FPU/g, a time of 64 h, and a solid-to-liquid ratio of 1:30), the actual yield of reducing sugar in the enzyme-treated hydrolysate was 443.52 mg/g SCB with a cellulose conversion rate of 85.33%. A bacterium, namely, Bacillus sp. EtOH, which produced ethanol and Baijiu aroma substances, was isolated from the high-temperature Daqu of Danquan Baijiu in our previous study. At last, when the strain EtOH was cultured for 36 h in a fermentation medium (reducing sugar from cellulase-treated SCB hydrolysate, yeast extract, and peptone), ethanol concentration reached 2.769 g/L (0.353%, v/v). The sugar-to-ethanol and SCB-to-ethanol yields were 13.85 and 11.81% in this study, respectively. In brief, after NaOH pretreatment, 1 g of original SCB produced 0.5460 g of NaOH-treated SCB. Then, after the enzymatic hydrolysis, reducing sugar yield (443.52 mg/g SCB) was obtained. Our study provided a suitable method for bioethanol production from SCB, which achieved efficient resource utilization of agricultural waste SCB.
Read full abstract