It has been imperative to study and stabilize cohesive soils for use in the construction of pavement subgrade and compacted landfill liners considering their unconfined compressive strength (UCS). As long as natural cohesive soil falls below 200 kN/m2 in strength, there is a structural necessity to improve its mechanical property to be suitable for the intended structural purposes. Subgrades and landfills are important environmental geotechnics structures needing the attention of engineering services due to their role in protecting the environment from associated hazards. In this research project, a comparative study and suitability assessment of the best analysis has been conducted on the behavior of the unconfined compressive strength (UCS) of cohesive soil reconstituted with cement and lime and mechanically stabilized at optimal compaction using multiple ensemble-based machine learning classification and symbolic regression techniques. The ensemble-based ML classification techniques are the gradient boosting (GB), CN2, naïve bayes (NB), support vector machine (SVM), stochastic gradient descent (SGD), k-nearest neighbor (K-NN), decision tree (Tree) and random forest (RF) and the artificial neural network (ANN) and response surface methodology (RSM) to estimate the (UCS, MPa) of cohesive soil stabilized with cement and lime. The considered inputs were cement (C), lime (Li), liquid limit (LL), plasticity index (PI), optimum moisture content (OMC), and maximum dry density (MDD). A total of 190 mix entries were collected from experimental exercises and partitioned into 74–26% train-test dataset. At the end of the model exercises, it was found that both GB and K-NN models showed the same excellent accuracy of 95%, while CN2, SVM, and Tree models shared the same level of accuracy of about 90%. RF and SGD models showed fair accuracy level of about 65–80% and finally (NB) badly producing an unacceptable low accuracy of 13%. The ANN and the RSM also showed closely matched accuracy to the SVM and the Tree. Both of correlation matrix and sensitivity analysis indicated that UCS is greatly affected by MDD, then the consistency limits and cement content, and lime content comes in the third place while the impact of (OMC) is almost neglected. This outcome can be applied in the field to obtain optimal compacted for a lime reconstituted soil considering the almost negligible impact of compactive moisture.
Read full abstract