Water quality modelling has proved to be effective method for managing river water quality. But the most effective and comprehensive approach involving integration of river water quality simulation and pollution visualization with the objective of pollution reduction and maintenance of environmental flow strategies has gained less attention. Thus, the objective of this study was to employ an integrated approach for mapping and analysing river water quality under various hydro-climatic and pollution scenarios. Specifically, this approach involved the integration of a river water quality simulation model, QUAL2K, Global Environmental Flow Calculator (GEFC), and Geographical Information System (GIS) to develop water quality index (WQI) based map charts of water quality. The calibrated QUAL2K model was utilized to simulate WQI parameters including water temperature, pH, electrical conductivity, dissolved oxygen (DO), biological oxygen demand (BOD), nitrates (NO3), ammonia (NH4), and alkalinity. To analyse the WQI, the Weighted Arithmetic-Water Quality Index (WA-WQI) method was employed for various individual and combined pollution scenarios, environmental flow (Eflow), and climate change scenarios. The developed integrated approach was applied to the Bhadravati segment of Bhadra River, India. The findings revealed that the prevailing WQI status of the study stretch ranged from poor to unsuitable for drinking purposes. This deterioration can be attributed to the impact of both industrial and municipal effluents. By maintaining the effective Environmental Management Class (EMC) flow rates (class C flowrate of EMC (40.32 m3/s)) in conjunction with appropriate Pollution Reduction (PR) level (10% PR) at headwater and incoming drains, the stream self-purification capacity was enhanced resulting in the Bhadravati River stretch water quality transitioning to favourable water quality condition.