Human immunodeficiency virus (HIV) infection continues to pose a major global health challenge. HIV entry into host cells via membrane fusion mediated by the viral envelope glycoprotein gp120/gp41 is a key step in the HIV life cycle. CCR5, expressed on CD4+ T cells and macrophages, acts as a coreceptor facilitating HIV-1 entry. The CCR5 antagonist maraviroc is used to treat HIV infection. However, it can cause adverse effects and has limitations such as only inhibiting CCR5-tropic viruses. There remains a need to develop alternative CCR5 inhibitors with improved safety profiles. Natural products may offer advantages over synthetic inhibitors including higher bioavailability, binding affinity, effectiveness, lower toxicity, and molecular diversity. However, screening the vast chemical space of natural compounds to identify novel CCR5 inhibitors presents challenges. This study aimed to address this gap through a hybrid ligand-based pharmacophore modeling and molecular docking approach to virtually screen large natural product databases. A reliable pharmacophore model was developed based on 311 known CCR5 antagonists and validated against an external data set. Five natural product databases containing over 306,000 compounds were filtered based on drug-likeness rules. The validated pharmacophore model screened the databases to identify 611 hits. Key residues of the CCR5 receptor crystal structure were identified for docking. The top hits were docked, and interactions were analyzed. Molecular dynamics simulations were conducted to examine complex stability. Computational prediction evaluated pharmacokinetic properties. Three compounds exhibited similar interactions and binding energies to maraviroc. MD simulations demonstrated complex stability comparable to maraviroc. One compound showed optimal predicted absorption, minimal metabolism, and a lower likelihood of interactions than maraviroc. This computational screening workflow identified three natural compounds with promising CCR5 inhibition and favorable pharmacokinetic profiles. One compound emerged as a lead based on bioavailability potential and minimal interaction risk. These findings present opportunities for developing alternative CCR5 antagonists and warrant further experimental investigation. Overall, the hybrid virtual screening approach proved effective for mining large natural product spaces to discover novel molecular entities with drug-like properties.
Read full abstract