Introduction Research on gender-based disparities in human brain structure has spanned over a century, yielding conflicting results and ongoing debate. While some studies indicate minimal distinctions, others consistently highlight differences in the corpus callosum (CC), even after accounting for average brain size. Methods Diverging from previous approaches, this study examines the morphology of the entire CC fiber rather than solely focusing on its midsagittal structure. Utilizing advanced neuroimaging techniques and generalized Q-imaging tractography, CC streamlines were constructed to assess gender differences in fractional anisotropy (FA), volume ratio, and cortical distribution. Student's t-test was employed to examine the disparities in FAbetween gender groups, while gender-based distinctions in the normalized volume of the CC and its segments were assessed using analysis of covariance (ANCOVA), with absolute whole white matter volume serving as a covariate. Results No significant gender-based disparities were found in either FA or normalized CC volume. While females exhibited consistently larger normalized volume CC streamlines than males, these differences lost statistical significance after adjusting for absolute total white matter volume as a covariate. Nonetheless, CC streamlines in females displayed a broader spatial distribution, encompassing various cortical regions, including the bilateral prefrontal cortex (medial and lateral surfaces), as well as medial parietal and temporal regions. Conclusion This study elucidates gender-related variations in the morphology of the brain's white matter pathways, indicating a more widespread cortical distribution of CC fibers in females compared to males. However, the study underscores the need for further investigations into connectivity patterns to fully elucidate these gender-based disparities.
Read full abstract