Probiotics in aquaculture hold promise for enhancing fish health and growth. Due to their increased specificity and affinity for their host, indigenous probiotics may offer isolated and potentially amplified benefits. This study investigated the effects of Lactococcus lactis PH3-05, previously isolated from adults of tropical gar (Atractosteus tropicus), on the growth, survival, digestive enzyme activity, intestinal morphology, expression of barrier and immune genes, and intestinal microbiota composition in the larvae of tropical gar. Larvae were fed with live L. lactis PH3-05 concentrations of 104, 106, and 108 CFU/g for 15 days alongside a control diet without probiotics. Higher concentrations of L. lactis PH3-05 (106 and 108 CFU/g) positively influenced larval growth, increasing hepatocyte area and enterocyte height. The 106 CFU/g dose significantly enhanced survival (46%) and digestive enzyme activity. Notably, the 108 CFU/g dose stimulated increased expression of muc-2 and il-10 genes, suggesting enhanced mucosal barrier function and anti-inflammatory response. Although L. lactis PH3-05 did not significantly change the diversity, structure, or Phylum level composition of intestinal microbiota, which was constituted by Proteobacteria, Bacteroidota, Chloroflexi, and Firmicutes, an increase in Lactobacillus abundance was observed in fish fed with 106 CFU/g, suggesting enhanced probiotic colonization. These results demonstrate that administering L. lactis PH3-05 at 106 CFU/g promotes growth, survival, and digestive health in A. tropicus larvae, establishing it as a promising indigenous probiotic candidate for aquaculture applications.